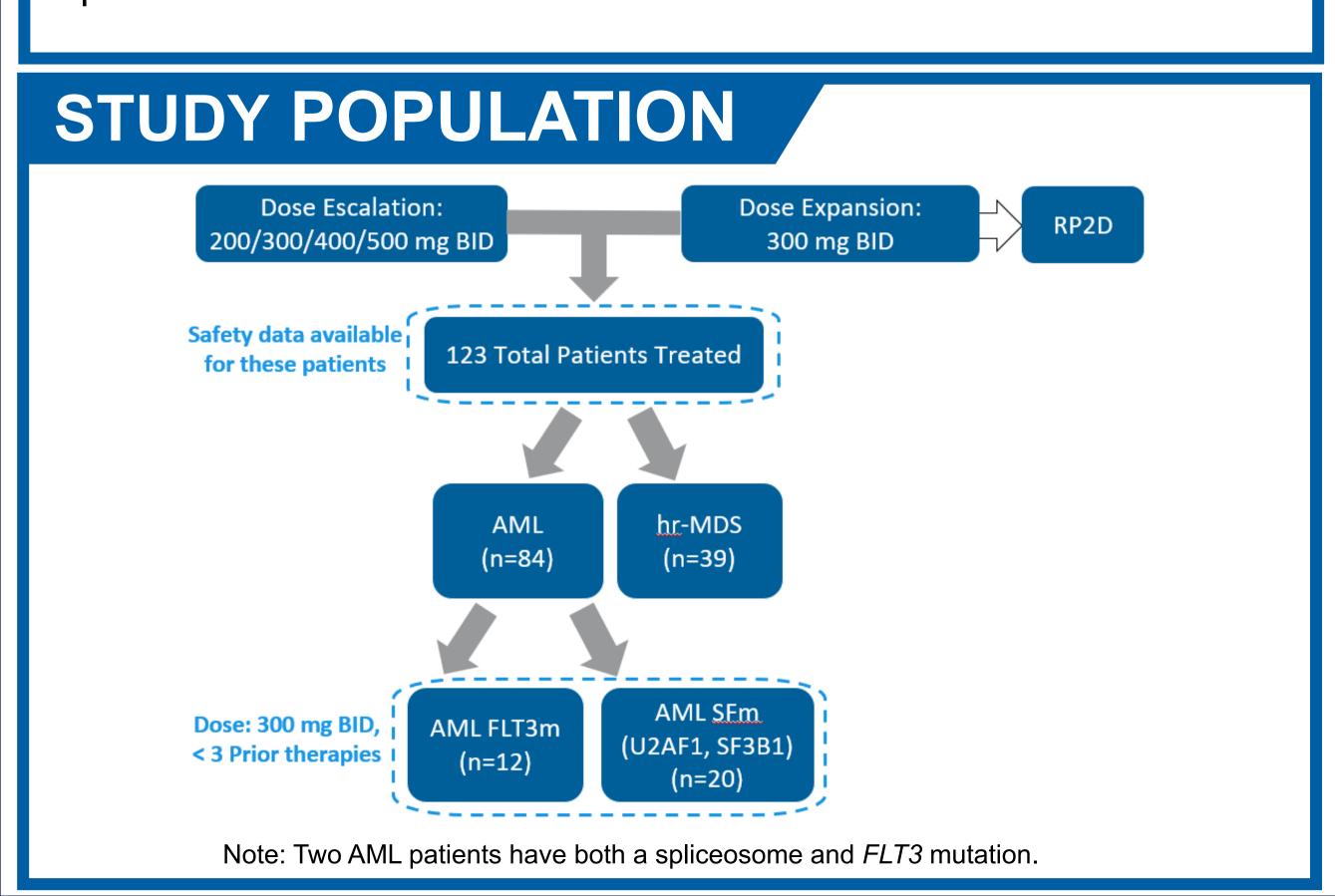
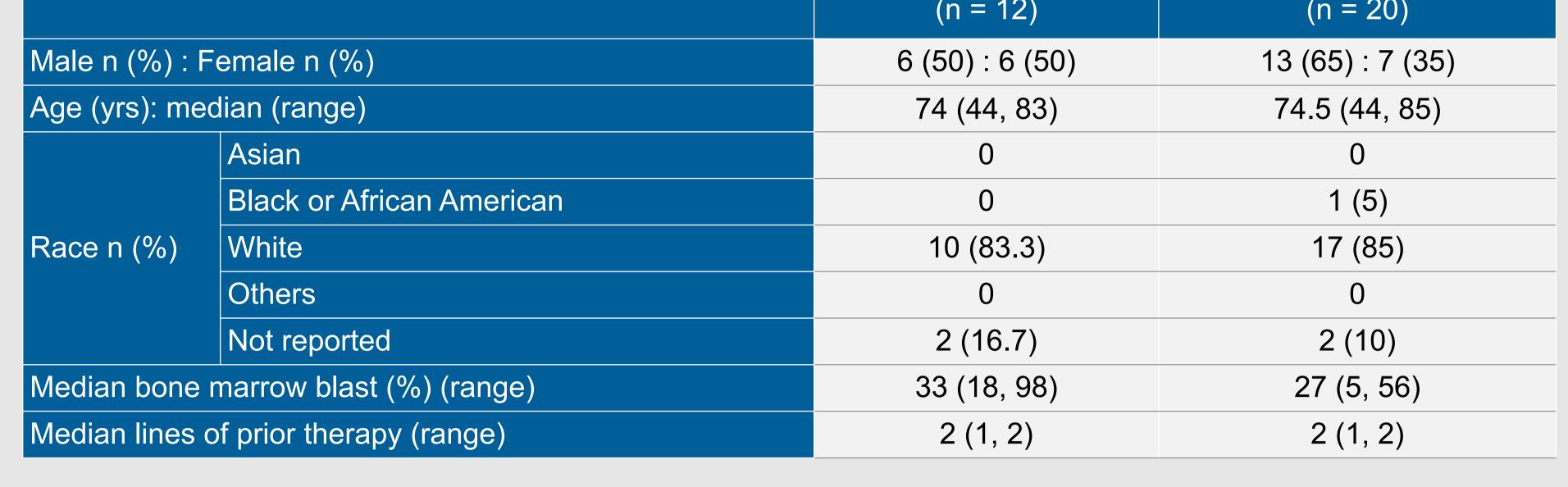


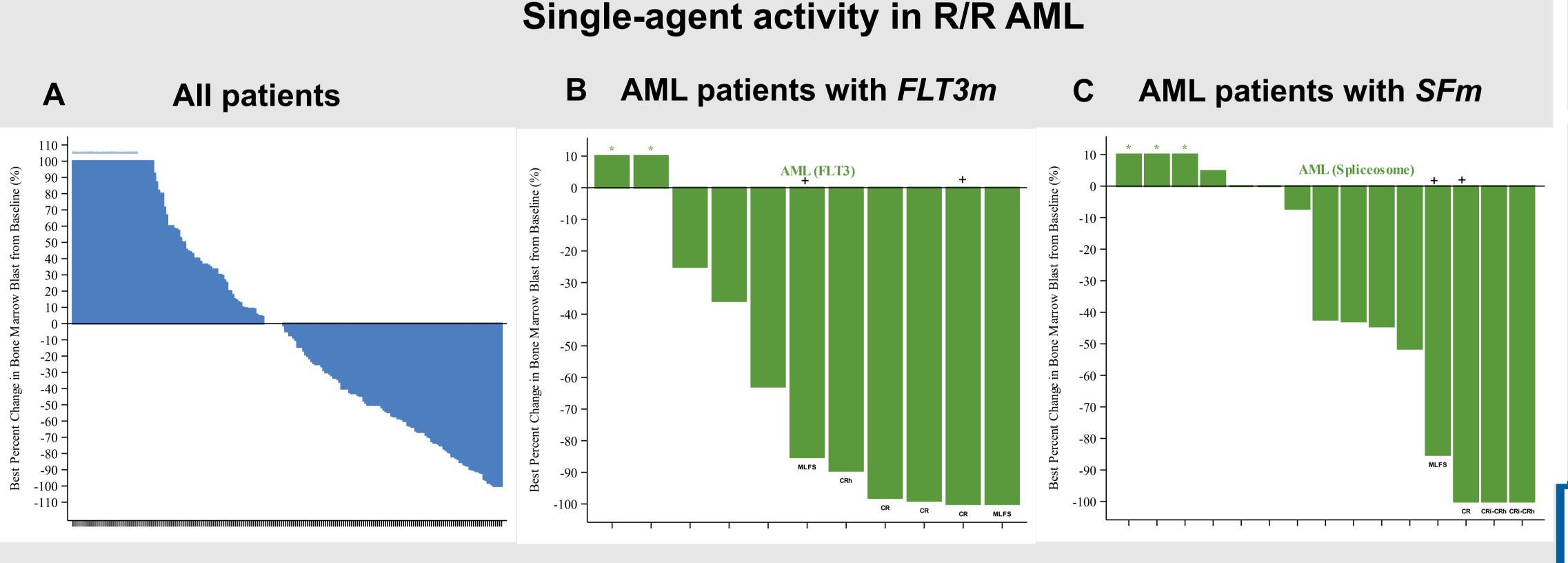
Preliminary Safety, Efficacy and Molecular Characterization of Emavusertib (CA-4948) In Relapsed/ Refractory Acute Myeloid Leukemia Patients With FLT3 Mutation

Eric S. Winer¹, Amit Verma², Stefanie Groepper³, Katharina S. Götze⁴, Yasmin Abaza⁵, Jan-Henrik Mikesch⁶, Gaurav S. Choudhary⁷, Alyssa Masciarelli⁷, Wanying Zhao⁷, Cole Gallagher⁷, Reinhard von Roemeling⁷, Daniel J. DeAngelo¹


1. Dana-Farber Cancer Institute, Boston, MA; 2. Albert Einstein College of Medicine/Montefiore Medicine Munich School of Medicine, Munich, Germany; 5. Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL; 6. Department of Medicine A, University Hospital Münster,, Germany; 7. Curis Inc., Lexington, MA

INTRODUCTION


- Acute myeloid leukemia (AML) is a heterogenous disease and exhibits a dynamic mutational landscape as the disease progresses.
- Internal tandem duplication (ITD) of FLT3 mutation (FLT3m) is considered an acquired late-event mutation and is associated with a poor prognosis in AML.¹ Genetic mutations in splicing factors (SFm) SF3B1 and U2AF1 drive overexpression of a highly active long isoform of interleukin-1 receptor associated kinase 4 (IRAK4), which is critical in triggering inflammation, oncogenesis, and survival of cancer cells.^{2,3}
- Emavusertib is a potent oral inhibitor of IRAK4, FLT3 (ITD and TKD - Tyrosine kinase domain), and CLK (1, 2, and 4), conferring preclinical efficacy advantages when compared with other IRAK4 or FLT3 inhibitors. In R/R AML patients with *FLT3m*, dual inhibition of IRAK4 and FLT3 by emavusertib can target mechanisms of adaptive resistance through compensatory activation of innate immune stress pathway.4 Treatment with emavusertib inhibits the NF-kB and MAPK pathways, thus offering a potential mechanism to address known pathways of resistance to BCL2 and FLT3 inhibitors.^{2,3,4,5}
- As of 26 February 2024, the ongoing TakeAim Leukemia trial (NCT04278768) has 123 patients (12 with *FLT3m and* 20 with *SFm*, 300mg BID with < 3 prior lines of therapy) treated with emavusertib monotherapy.


METHOD

- The safety, clinical activity, and potential biomarkers of emavusertib in relapsed/refractory (R/R) AML and higher-risk myelodysplastic syndrome (hr-MDS, IPSS-R score> 3.5) are being investigated.
- We present preliminary efficacy of emavusertib in R/R AML patients with FLT3m and/or SFm (U2AF1 and SF3B1) including molecular disease characterization.
- Mutational profiles of patients were documented based on local testing results. Bone marrow and peripheral blood of enrolled patients were collected at the baseline and on treatment.

RESULTS **Baseline Characteristics** AML – FLT3m AML – SFm (n = 12)(n = 20)Male n (%) : Female n (%) 6 (50) : 6 (50) 13 (65) : 7 (35) Age (yrs): median (range) 74 (44, 83) 74.5 (44, 85) Asian Black or African American 1 (5) Race n (%) White 10 (83.3) 17 (85)

- Includes all patients that had baseline and post-treatment bone marrow blast assessments. * Indicates best percentage change from baseline >100%.
- * indicates the best percentage change from baseline >10% + indicates 2 AML patients having both a spliceosome and FLT3 mutation.

Duration of treatment in R/R AML patients with targeted mutations

- Among 12 treated AML FLT3m patients, one was on-going with treatment and not included in the figure B due to not
- reaching first response assessment yet. • Among 20 treated AML SFm patients, 5 were not included in figure C: Two patients were still undergoing treatment
- and pending for post-baseline marrow blast data. Three patients discontinued early due to adverse event (1 patient) and disease progression (2 patients) without post-baseline marrow blast assessment.

AML patients with *FLT3m* AML patients with SFm Ri-CR /-- indicates the initial response/best indicates the initial response/best response of a patient response of a patient Duration of Treatment (Months) Median time to first response was 28.5 days Median time to first response was 29 days

Treatment-related adverse events (TRAEs) Grade ≥ 3 in all patients

Grade 3+ Treatment-Related Adverse Event reported in > 1 patients, n (%)	200 mg BID (N = 27)	300 mg BID (N = 78)	400 mg BID (N = 15)	500 mg BID (N = 3)	Total (N=123)
# of patients having grade 3+ TRAEs	4 (14.8)	21 (26.9)	7 (46.7)	2 (66.7)	34 (27.6)
# of patients having non-hematological grade 3+ TRAEs	3 (11.1)	17 (21.8)	6 (40)	2 (66.7)	28 (22.8)
Blood creatine phosphokinase increased	0	6 (7.7)	0	0	6 (4.9)
Platelet count decreased	1 (3.7)	3 (3.8)	2 (13.3)	0	6 (4.9)
Rhabdomyolysis*	0	2 (2.6)	1 (6.7)	1 (33.3)	4 (3.3)
Anemia	0	3 (3.8)	0	0	3 (2.4)
Aspartate aminotransferase increased	1 (3.7)	2 (2.6)	0	0	3 (2.4)
Alanine aminotransferase increased	2 (7.4)	0	0	0	2 (1.6)
Dizziness	1 (3.7)	1 (1.3)	0	0	2 (1.6)
Febrile neutropenia	0	2 (2.6)	0	0	2 (1.6)
Lipase increased	0	2 (2.6)	0	0	2 (1.6)
Neutropenia	0	1 (1.3)	1 (6.7)	0	2 (1.6)
Neutrophil count decreased	0	1 (1.3)	1 (6.7)	0	2 (1.6)
Syncope	0	1 (1.3)	0	1 (33.3)	2 (1.6)

Note: After discussion with regulatory authorities of investigator-reported AEs, objective laboratory criteria for the determination of rhabdomyolysis were adopted from existing approved drug labels (CPK >10 x ULN and SCr ≥ 1.5 x ULN). Previously, reported events of rhabdomyolysis were determined by subjective criteria. Using the objective criteria, rhabdomyolysis was reported in 1/123 patients.

Clinical activity in responders with R/R AML - FLT3m

Patient #	Age	Sex	ELN risk	# prior therapy	Prior FLT3i	Best response	Co-mutations At Baseline
1	80	М	Intermediate	1	N	CR	U2AF1, BCOR,WT1
2	44	М	Adverse	2	Υ	CR	NRAS, WT1
3	74	М	Adverse	2	N	MLFS	SF3B1,GATA2, PHF6, RUNX1, CBLC
4	78	F	Adverse	2	Υ	MLFS	Not available
5	79	F	Intermediate	2	N	CR	DMNT3A, SRSF2
6	74	М	Intermediate	1	Υ	CRh	Not available

CONCLUSIONS

- Emavusertib has an acceptable and manageable safety profile in R/R AML and hr-MDS patients.
- > The mutation profiles of responders indicate that emavusertib may be able to target diverse underlying genetic mechanisms of resistance to prior FLT3i regimens. This is suggestive of the disease-modifying activity of emavusertib.
- Emavusertib has demonstrated anti-leukemic activity in patients with SFm and FLT3m, including patients who have progressed on FLT3i regimens.
- Enrollment in this trial is continuing at the RP2D dose of 300 mg BID (phase 2 expansion cohort) in patients (SFm and FLT3m) with < 3 prior lines of therapy.

REFERENCES

- Grob T et al J Clin Oncol 2023; 41(4) 756-765
- . Smith et al. Nat Cell Biol. 2019 May;21(5):640-650.
- Choudhary et.al. Elife. 2022 Aug;11:e78136.
- . Melgar et al. Sci Transl Med 2019(11):508.
- Gummadi et al. ACS Med Chem Lett 2020; 11(12):2374-2381.

ACKNOWLEDGEMENTS

We would like to thank the patients, their families and caregivers for their invaluable contribution and participation in this study.

CONTACT INFORMATION

Reinhard von Roemeling, MD SVP, Clinical Development, CURIS rvonroemeling@curis.com