

¹Curis, Inc., Lexington, MA; ²Aurigene Discovery Technologies Ltd., Bangalore, India; ³ Carolina BioOncology Institute, Huntersville, NC

С

Oral CA-170 pharmacokinetic profile in mice

Introduction

CA-170 is a small molecule, orally bioavailable antagonist of the VISTA/PD-1H and PD-L1 immune checkpoint pathways which is currently undergoing Phase I clinical testing. CA-170 was selected as clinical candidate based on its ability to antagonize T cell immune suppression (human or mouse) mediated by VISTA/PD-1H, PD-L1 or PD-L2 (see tables below).

Mouse Splenocytes						
	Proliferation Rescue (<i>in vitro</i>) EC ₅₀ (nM)		IFN-γ Rescue (<i>in vitro</i>) EC ₅₀ (nM)			
Test Compound	PD-L1	PD-L2	PD-L1	PD-L2		
CA-170	16.32	16.56	33.79	54.98		
Anti-PD-1 antibody (clone J43)	17.05	10.45	12.59	37.58		
Human PBMCs						
	Proliferation Rescue (<i>in vitro</i>)		IFN-γ Rescue (<i>in vitro</i>)			

<u>Mo</u>	use CA-170 plasma	<u>CA-170 exposure in mice</u>
A	concentration	B
Average concentration (10^{1} 1.0×10 ⁷ 1.0×10 ⁶ 1.0×10 ⁵ 1.0×10 ⁴ 1.0×10 ³ 1.0×10 ² 1.0×10 ¹ 1.0×10 ⁰ 0	$\begin{array}{r} + 10 \text{ mg/kg} \\ + 30 \text{ mg/kg} \\ + 100 \text{ mg/kg} \\ + 300 \text{ mg/kg} \\ + 1000 \text{ mg/kg} \\ + 1000 \text{ mg/kg} \\ \end{array}$	$AUC_{(last)}$ $AUC_$

Study conducted in:	United States, Europe & Asia			
Clinical Trials.gov identifier:	NCT02812875			
Trial Status:	Currently recruiting patients			
Conditions:	Advanced solid tumors & lymphomas			
Starting dose:	50 mg QD, calculated based on the minimum anticipated biological effect level (MABEL).			
Oral CA-170 pharmacokinetic profile in humans				

<u>Human CA-170 plasma</u>		В	CA-170 exposure in humans		
10000-	<u>concentration</u>				
	🔸 Day 1		AUClast		

(NCT02812875)

lest Compound	PD-L1	PD-LZ	PD-LI	PD-LZ	VISIA/PD-1H
CA-170	43.47	40.57	56.43	149.0	49.35
Anti-PD-1 antibody (clone J116)	18.87	22.78	27.24	66.87	N/T
Anti-VISTA antibody (clone 730802)	N/T	N/T	N/T	N/T	25.82
VISTA isotype ctrl.	N/T	N/T	N/T	N/T	628.3

N/T = Not Tested

CA-170 non-clinical safety summary:

- No mortality, test item-related changes, or microscopic pathology changes in tissues observed
- the maximum tolerated dose (MTD) was <u>NOT</u> reached
- ✤ NOAEL (no observed adverse effect level) was <u>>1000 mg/kg/day</u>.
- Here we present the relationship between CA-170 non-clinical and preliminary clinical data. This presentation contains interim data (Nov/01/2016) from the ongoing CA-170-101 Phase 1 clinical trial which was obtained after the abstract submission.

	Balb/c mice					
Dose (mg/kg)	10	30	100	300	1000	
T _{1/2} (hours)	4.57	3.94	3.29	3.02	2.70	
T _{max} (hours)	0.5	0.5	0.5	0.5	0.5	
C _{max} (ng/mL)	890	5572	31821	261823	1793147	
AUC _{last} (hr*ng/mL)	3170	38668	136696	575297	1896148	

A) CA-170 plasma concentrations were measured at various time points in Balb/c mice following a single oral dose. The data shown are the average plasma concentrations of male and female mice (n=6), except 10 mg/kg which is from males only (n=3). B) CA-170 plasma exposure was calculated from male (M) and female (F) mice orally dosed for 1 or 28 consecutive days. C) CA-170 pharmacokinetic parameters in Balb/c mice (averaged male & female) following the administration of the first dose. CA-170 exposure is greater than dose proportional between 10 mg/kg and 300 mg/kg in Balb/c mice.

Non-clinical CA-170 efficacy and T cell activation in syngeneic mouse tumor models

		Cycle 1 Day 15			
Dose (mg)	50	100	200	400	200
T _{1/2} (hours)	8.7	9.6	5.3	12.9	7.1
T _{max} (hours)	7.4	4	3	4	7
C _{max} (ng/mL)	412	1107	1998	4100	2337
AUC _{last} (hr*ng/mL)	5197	11019	27488	66664	33998

Preliminary pharmacokinetic data from the CA-170 Phase 1 trial. A) CA-170 plasma concentrations after 1 dose (Day 1) and after 15 consecutive doses (Day 15). B) CA-170 plasma exposure was calculated from a sample series collected on Day 1 following the first oral dose at 50 mg (n=1), 100 mg (n=1), 200 mg (n=1) or 400 mg (n=1). C) CA-170 pharmacokinetic parameters in humans.

Evidence of CA-170 immune PD activity in human peripheral blood (NCT02812875)

A) Mice implanted with subcutaneous B16F1 tumor cells were treated as indicated. Tumor growth inhibition at Day 18 is 23%, 41% and 7% for CA-170 at 10 mg/kg, CA-170 at 100 mg/kg and anti-PD-1 (100 µg/day), respectively. B) MC38 tumor cells were subcutaneously implanted in C57BL/6 mice on Day 0 and dosed on Day 1 with vehicle (water, PO; n=10), CA-170 (PO; n=10) or anti-PD-1 (IP, Q7D; n=10). Tumor growth inhibition at Day 13 was 43% and 36% for CA-170 and anti-PD-1, respectively.

C57BL/6 mice were subcutaneously implanted with B16/F1 tumor cells, randomized and assigned to one of three indicated treatment groups (n=5/group). A) The number of CD69⁺ peripheral blood T cells and **B)** CD69 expression level were analyzed following 2 days of oral CA-170 dosing. C) Tumor infiltrating CD8+ T cells were analyzed following 6 days of oral dosing. P-values were determined by Student's t-tests

*Corresponding Author: Adam S. Lazorchak, PhD alazorchak@curis.com

Change in the percent of circulating **CD8+ T cells expressing:**

Peripheral blood (drawn pre-, 4 hours post and 24 hours post CA-170 dosing) from patients dosed orally at 50 mg (PT-1; n=1), 100 mg (PT-2; n=1) or 200 mg (PT-3; n=1). The blue dashed line represents the pre-dosed patient sample.

Summary

- ✤ CA-170 is the first potent and selective, oral immune checkpoint antagonist to be tested in human cancer patients.
- Non-clinical data demonstrates dose-dependent oral exposure, immune modulation and anti-tumor activity.

Based on the non-clinical CA-170 exposure and pharmacodynamic data in mice, the clinical CA-170 starting dose of 50 mg shows sufficient drug exposure to potentially elicit biological activity in humans.

